

AMS (Analog MEMS & Sensor Group)

General Purpose Analog & RF Division Power Management

Quality and Reliability

Evaluation Plan

Reliability Evaluation Plan

DPAK package in ASE WEIHAI

General Ir	nformation		Locations			
Product Lines	LM05	Wafer fab	Singapore 6			
Product Description	POSITIVE VR 1.5A 5V					
P/N	L78M05					
Product Group	AMG	Assembly plant	ASE WEIHAI			
Product division	General Purpose Analog & RF					
Deekere		Delle billte die b				
Package	DPAK	Reliability Lab	Catania Reliability LAB			
Silicon Process technology	HBIP40V					
General Ir	nformation					
	1017					
Product Description	L317					
P/N	LM317D2T					
Product Group	AMG					
Product division	General Purpose Analog & RF					
	POWER MANAGEMENT					
Package	DPAK					
Silicon Process technology	BIP (>6um)					
General Ir	nformation					
Product Description	KS33					
P/N	LD1117					
Product Group	AMG					
Product division	General Purpose Analog & RF POWER MANAGEMENT					
Package	DPAK					
Silicon Process technology	BIP (>6um)					

Version	Date	Pages	Created by	Approved by	Comment
1.1	February-2018	5	Giuseppe Giacopello	Giovanni Presti	First issue

DOCUMENT INFORMATION

Note: This report is a summary of the reliability trials performed in good faith by STMicroelectronics in order to evaluate the potential reliability risks during the product life using a set of defined test methods. This report does not imply for STMicroelectronics expressly or implicitly any contractual obligations other than as set forth in STMicroelectronics general terms and conditions of Sale. This report and its contents shall not be disclosed to a third party without previous written agreement from STMicroelectronics.

AMS (Analog MEMS & Sensor Group)

General Purpose Analog & RF Division Power Management

Quality and Reliability

Evaluation Plan

TABLE OF CONTENTS

APPLICABLE AND REFERENCE DOCUMENTS	3
RELIABILITY EVALUATION OVERVIEW	
2.2 COSTRUCTION NOTE	
TEST PLAN	4
	RELIABILITY EVALUATION OVERVIEW. 2.1 OBJECTIVES 2.2 COSTRUCTION NOTE

General Purpose Analog & RF Division Power Management

Quality and Reliability

Evaluation Plan

1 APPLICABLE AND REFERENCE DOCUMENTS

Document reference	Short description
JESD47	Stress-Test-Driven Qualification of Integrated Circuits

2 RELIABILITY EVALUATION OVERVIEW

2.1 Objectives

To qualify the DPAK with cu wires in ASE Weihai.

TV1: KS33	- Maximum Die size
TV2: LM17	- Ag strip on upper side of pad for bonding on frame
TV3: LM05	- Minimum Die size

Three cumulative different qualification Lots are requested

2.2 Costruction note

.

Г	KS33	LM17	LM05			
Wafer/Die fab. Information						
Wafer fab manufacturing location	AMK 6	AMK 6	AMK 6			
Technology	BIP (>6um)	BIP (>6um)	HBIP40			
Die finishing back side	Cr/Ni/Au	Cr/Ni/Au	Cr/Ni/Ag			
Die size	1990x1860	1990x1810	1280x1500			
Bond pad metallization layers	AlSi 3µm	AlSi 3µm	AlSiCu			
Passivation type	SiN SiN		P-VAPOX/NITRIDE			
Assembly information						
Assembly site	ASE Weihai	ASE Weihai	ASE Weihai			
Package description	DPAK					
Mold Compound	Ероху					
Die attach	Soft solder					
Bond Wire	Copper 1.5 mils	Copper 1.5 mils	Copper 1.5 mils			

General Purpose Analog & RF Division Power Management

Quality and Reliability

Evaluation Plan

3 TEST PLAN

Test	PC	Std ref.	Conditions		Step	Lot 1	Lot 2	Lot 3	Note
						LD1117	LM317	L78M05	Note
Die Ori	Die Oriented Tests								
		JESD22			168 H		77	77	
HTOL	N	JESD22 A-108	Tj = 125° C, BIAS		500 H		77	77	
		A-100			1000 H		77	77	
		JESD22			168 H	25	25	25	
HTSL	N	A-103	Ta = 150°C		500 H	25	25	25	
		A-105			1000 H	25	25	25	
		JESD22			168 H	25	25	25	
HTSL	N	JESD22 A-103	Ta = 175°C		500 H	25	25	25	Eng
		A-105			1000 H	25	25	25	
Packag	je Or	iented Test	S						
PC		JESD22 A-113	Drying 24 H @ 125°C Store 168 H @ Ta=85°C Rh=85% Oven Reflow @ Tpeak=260°C 3 times			Final	Final	Final	
AC	Y	JESD22	Pa=2Atm / Ta=121°C		96 h	25	25	25	
7.0		A-102			168 h	25	25	25	Eng
		JESD22			100cy	25	25	25	
TC	Y	A-104	Ta = -65°C to 150°C		200cy	25	25	25	(1)
	A-104				500 cy	25	25	25	
		JESD22			168 H	25	25	25	
THB	Y	A-101	Ta = 85° C, RH = 85%, BIAS		500 H	25	25	25	
		A-101	A-101		1000 H	25	25	25	
Other t	Other tests								
ESD		JESD22- C101	CDM			Yes	Yes	Yes	
CA			Construction Analysis			Yes	Yes		

(1) DPA after 500cy

General Purpose Analog & RF Division Power Management

Evaluation Plan

<u>4</u> TESTS DESCRIPTION

Test name	Description	Purpose				
Die Oriented						
HTOL High Temperature Operating Life	The device is stressed in static or dynamic configuration, approaching the operative max. absolute ratings in terms of junction temperature and bias condition.	To determine the effects of bias conditions and temperature on solid state devices over time. It simulates the devices' operating condition in an accelerated way. The typical failure modes are related to, silicon degradation, wire-bonds degradation, oxide faults.				
HTSL High Temperature Storage Life	The device is stored in unbiased condition at the max. temperature allowed by the package materials, sometimes higher than the max. operative temperature.	To investigate the failure mechanisms activated by high temperature, typically wire-bonds solder joint ageing, data retention faults, metal stress-voiding.				
Package Oriented						
PC Preconditioning	The device is submitted to a typical temperature profile used for surface mounting devices, after a controlled moisture absorption.	As stand-alone test: to investigate the moisture sensitivity level. As preconditioning before other reliability tests: to verify that the surface mounting stress does not impact on the subsequent reliability performance. The typical failure modes are "pop corn" effect and delamination.				
AC Auto Clave (Pressure Pot)	The device is stored in saturated steam, at fixed and controlled conditions of pressure and temperature.	To investigate corrosion phenomena affecting die or package materials, related to chemical contamination and package hermeticity.				
TC Temperature Cycling	The device is submitted to cycled temperature excursions, between a hot and a cold chamber in air atmosphere.	To investigate failure modes related to the thermo-mechanical stress induced by the different thermal expansion of the materials interacting in the die-package system. Typical failure modes are linked to metal displacement, dielectric cracking, molding compound delamination, wire- bonds failure, die-attach layer degradation.				
THB Temperature Humidity Bias	The device is biased in static configuration minimizing its internal power dissipation, and stored at controlled conditions of ambient temperature and relative humidity.	To evaluate the package moisture resistance with electrical field applied, both electrolytic and galvanic corrosion are put in evidence.				
Other						
ESD Electro Static Discharge	The device is submitted to a high voltage peak on all his pins simulating ESD stress according to different simulation models. CDM : Charged Device Model	To classify the device according to his susceptibility to damage or degradation by exposure to electrostatic discharge.				
CA Construction Analysis	Construction Analysis	To verify the physical product conformity				